Tetrahedron Lettern No.46, pp. 5669-5672, 1966. Pergana Prean Ltd. Printed in Great Britain.

CHAIN EXITENSION OF SUGAR-ACID ESTERS WTTH SULPHOXIDFS

J.B.Lee

Department of Chemistry, The University, Loughborough, Leics.

(Recoived 8 Aagast 1966)

Abstract

A number of sulphur-containing sugar derivatives are known having moderate activity against virus and other microorganisms, and as part of work directed to the preparation of some analgous sugars containing sulphur residues we have investigated the reactions of various sulphoxides with sugar derivatives.

Since carbanion formation occurs readily with sulphoxides, we considered that an analogous reaction to the Claisen reaction (1) should permit the synthesis of β-ketosulphoxides from esters - (1) (1) R.CO.OR ${ }^{\prime}+\mathrm{R}^{\prime \prime} \mathrm{CHSOCH}_{2} \mathrm{R}^{\prime \prime} \longrightarrow \mathrm{OR}^{1}+\mathrm{R} \cdot \mathrm{COCR}^{\prime \prime} \mathrm{H} . \mathrm{SOCH}_{2} \mathrm{R}^{\prime \prime}$ and the application of this reaction to suitably protected glyconic or glycuronic aeld esters should lead to chain extension with formation of interesting new sugars. Further, since it is possible to cleave sulphoxides readily, with, eg. Raney nickel (2) or aluminium amalgm (3), a variety of sulphur-free chain-extended sugars should also become accessible (2) (2) $\mathrm{RCO} . \mathrm{CR}^{\mathrm{H}} \mathrm{H} \cdot \mathrm{SOCH}_{2} \mathrm{R}^{\prime \prime} \xrightarrow{\mathrm{H}} \mathrm{RCOCH}_{2} \mathrm{R}^{\prime \prime}$

Preliminary experiments using simple esters and carbanions produced from dimethyl-or dibutyl-sulphoxides showed that rapid reaction occurs to give, generally solid, β-ketosulphoxides, the structures of which

were conlirmed by cleavage to give known ketones.
Thuss ethyl benzoate was converted to acetophenone or valerophenone respectively by the action of sodio-dimetinyl sulphoxide or sodio dibutylsulphoxide; in analogous reactions ethyl phenylacetate gave benzyl methyl ketone and benzyl butylketone.

Application to sugars was investigated, and again reaction was confirmed by the conversion of intermediate sulphur compounds to known materials. For example methyl 1,2:3,4-di-0-isopropylidene α-D-galacturonate with dimethyl sulphoxide gave finally 1,2;3,4-d1-0-1sopropyl-1dene-7-deoxy $\underline{\alpha}-\mathrm{D}-\mathrm{galactohepto-6-ulose} ,\mathrm{whilst} \mathrm{methyl} \mathrm{methyl-2,3-} \mathrm{\underline{-}}$ isopropylidene-D-1yxuronate and methyl 1,2-0-isopropylidene-3-0-benzyla-D-xyluronate were converted respectively to methyl $2,3-\underline{0}-$ isopropylidene-6-deoxy-D-lyxohexo-5-ulose and 1,2-0-isopropylidene--3-0-benzyl-6-deoxy $\underset{-}{ }-\mathrm{D}-\mathrm{xyl}$ ohexo-5-ulose.

Examination of the reaction of lactones with the reagent was made. γ-Butyrolactone reacted readily with sodio-dimethyl sulphoxide to give, after desulphurisation, 5-hydroxy-pentan-2-one. The action upon sugar lactones is being examined.

Since a variety of dialkyl and diaralkyl sulphoxides are available or readily synthesised, this method should prove capable of considerable variation and a range of poly-deoxy sugars should become available for investigation.

The following is a typical experiment.
Preparation of methyl-octyl ketone - (a) All operations ware carried out where appropriate under dry nitrogen. Sodium hydride (1.15g), obtained from the oil suspension by repeated wasking witn petrol-ether, was dissolved in dimethyl sulphoxide (15 ml .) and to the solution was added dry methyl nonoate with ice-cooling. The mixture was allowed
to reac' room temperature, warmed for 5 min . at $25^{\circ} \mathrm{C}$. , and then left overnight at room temperature. From the reaction mixture was obtained 2-keto-decyl methyl sulphoxide m.63-64ㅇ (from ethyl acetate), showing moderate or strong bands in the infra red at 1710 , $1698^{*}, 1470,1370,1235, /$ and $718 \mathrm{~cm}^{-1}$. Found : $C, 60.38,60.80 ; \mathrm{H}, 9.66,9.75 ; \mathrm{s}, 14.36,14.87$: $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 60.55 ; \mathrm{H}, 10.09 ; \mathrm{S}, 14.68 \%$.
(b) The β-ketosulphoxide was dissolved in 65% aqueous ethanol. Aluminium foil was activated with mercuric chioride and the solution of sulphoxide was added inmediately. The solution was kept slightly warmed for several hours, the reduced product was separated, and fractionally distilled, to sive metiayl octyl ketone (5.3g.), b. $104-108^{\circ} \mathrm{C} . / 17 \mathrm{~mm} .$, $n_{D}^{21} 1.4252$, band at $1703 \mathrm{~cm}^{-1}$ in the infla red.
*A number of these compounds have shown split carbonyl bands, with the higher band as a shoulder.

References

(1) L.Claisen, Ann., 277, 168 (1893). F.W.Swamer and C.R.Hauser, J.Amer. Chem. Soc. , 72, 1354 (1950).
(2) Cf. eg. G.M.Badger, J.Chem.Soc., 4162 (1954).
H.Wynberg and A.Logothetis, J.Amer-Chem.Soc.,

78, 1958 (1956). R Mozingo, D.E.Wolf, S.A.Harris, and
K.Folkers, 1bid., 65, 1013 (1943).
(3) J.D.Dutcher, J.R.Johnson, and W.F.Bruce, J.Amer.Chem.Soc. .

67, 1736 (1945). J.R.Johnson and J.B.Buchanan, ibid.,
75. 2103 (1953).
(4) M.A.Mitz, A.E.Axelrod, and K.Hofman, J.Amer.Chem.Soc.,

72, 1232 (1950).
Some examples of chain extension

Ester	Sulphoxide ${ }^{\text {a }}$	Desulphurised product ${ }^{\text {b }}$
Ethyl benzoate	DWSO	Acetophenone b. 200 ; $\mathrm{n}_{\mathrm{D}}^{20} 1.5352$.
Ethyl benzoate	DBSO	Valerophenone b $125^{\circ} / 15 \mathrm{~mm}, \mathrm{n}_{\mathrm{D}}^{20} 1.5344$
Ethyl phenylacetate	IMSO	Benzyl methyl ketone b. $100 \% 15$ mm. $\mathrm{n}_{\mathrm{D}}^{20} 1.5166$
etnyl phenylacetate	IEASO	Benzyl butyl ketone b. 140 $/ 18 \mathrm{~mm}$.
Methyl nonoate	DMSO	Octy] methyl ketone b. $106 / 17 \mathrm{~mm} ., \mathrm{n}_{\mathrm{D}}^{21} 1.4252$
MethyI oleate	LMSO	Methyl heptadecenyl ketone b.60/1 mm. Semi-carbazone m. 98-90. (4)
Methyl 1,2;3,4-di-0- isopropylidene人-D-galacturonate	DMSO	1,2;3,4-di-0-1sopropylidene-7-deoxy α-D-galacto-hepto-
Methyl methyl 2,3-0-1sopropylidene -D-1yxuronate	DMSO	Methyl 2,3-0-isopropylidene-6-deoxy-D-르릐lo-hexo-5-ulose b. $80^{\circ} / 0.04 \mathrm{~mm} \cdot[\alpha]_{\mathrm{D}}{ }^{23} 17^{\circ}$ (EtOH).
Methyl 1,2-0-isopropylidene-3-- $-\underline{\text {-benzy }} \boldsymbol{1} \underline{\alpha}-\underset{\sim}{D}$-xyluronate	DMSO	1,2-0-isopropylidine-3-0-benzyl-6-deoxy-D-xylohexo-5-ulose m. $50-52^{\circ} ;[\alpha]_{D}^{25}-88^{\circ}\left(\right.$ c. $\left.1.4 \mathrm{CHCl}_{3}\right)$
$Z_{\text {DMSO }}=$ dimethyl sulphoxide. DBSO $=$ dibutyl sulphoxide Identity confirmed by comparison, where appropriate, with spectra, gas-liquid chromatography, thin layer chromatography, 2,4-dinitrophenylhydrazones or other derivatives.		

